Fast Collisional Lipid Transfer Among Polymer-Bounded Nanodiscs

نویسندگان

  • Rodrigo Cuevas Arenas
  • Bartholomäus Danielczak
  • Anne Martel
  • Lionel Porcar
  • Cécile Breyton
  • Christine Ebel
  • Sandro Keller
چکیده

Some styrene/maleic acid (SMA) copolymers solubilise membrane lipids and proteins to form polymer-bounded nanodiscs termed SMA/lipid particles (SMALPs). Although SMALPs preserve a lipid-bilayer core, they appear to be more dynamic than other membrane mimics. We used time-resolved Förster resonance energy transfer and small-angle neutron scattering to determine the kinetics and the mechanisms of phospholipid transfer among SMALPs. In contrast with vesicles or protein-bounded nanodiscs, SMALPs exchange lipids not only by monomer diffusion but also by fast collisional transfer. Under typical experimental conditions, lipid exchange occurs within seconds in the case of SMALPs but takes minutes to days in the other bilayer particles. The diffusional and second-order collisional exchange rate constants for SMALPs at 30 °C are kdif = 0.287 s-1 and kcol = 222 M-1s-1, respectively. Together with the fast kinetics, the observed invariability of the rate constants with probe hydrophobicity and the moderate activation enthalpy of ~70 kJ mol-1 imply that lipids exchange through a "hydrocarbon continuum" enabled by the flexible nature of the SMA belt surrounding the lipid-bilayer core. Owing to their fast lipid-exchange kinetics, SMALPs represent highly dynamic equilibrium rather than kinetically trapped membrane mimics, which has important implications for studying protein/lipid interactions in polymer-bounded nanodiscs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SMA-SH: Modified Styrene-Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs.

Challenges in purification and subsequent functionalization of membrane proteins often complicate their biochemical and biophysical characterization. Purification of membrane proteins generally involves replacing the lipids surrounding the protein with detergent molecules, which can affect protein structure and function. Recently, it was shown that styrene-maleic acid copolymers (SMA) can disso...

متن کامل

Static and dynamic properties of phospholipid bilayer nanodiscs.

Nanodiscs are phospholipid-protein complexes which are relevant to nascent high-density lipoprotein and are applicable as a drug carrier and a tool to immobilize membrane proteins. We evaluated the structure and dynamics of the nanoparticles consisting of dimyristoylphosphatidylcholine (DMPC) and apolipoprotein A-I (apoA-I) with small-angle neutron scattering (SANS) and fluorescence methods and...

متن کامل

Liver microsomal lipid enhances the activity and redox coupling of colocalized cytochrome P450 reductase‐cytochrome P450 3A4 in nanodiscs

The haem-containing mono-oxygenase cytochrome P450 3A4 (CYP3A4) and its redox partner NADPH-dependent cytochrome P450 oxidoreductase (CPR) are among the most important enzymes in human liver for metabolizing drugs and xenobiotic compounds. They are membrane-bound in the endoplasmic reticulum (ER). How ER colocalization and the complex ER phospholipid composition influence enzyme activity are no...

متن کامل

Actual fusion efficiency in the lipid mixing assay - Comparison between nanodiscs and liposomes

Lipid exchange occurs between membranes during fusion or active lipid transfer. These processes are necessary in vivo for the homeostasis of the cell at the level of the membranes, the organelles and the cell itself. They are also used by the cell to interact with the surrounding medium. Several assays have been developed to characterize in vitro these processes on model systems. The most commo...

متن کامل

Isolation of yeast complex IV in native lipid nanodiscs.

We used the amphipathic styrene maleic acid (SMA) co-polymer to extract cytochrome c oxidase (CytcO) in its native lipid environment from S. cerevisiae mitochondria. Native nanodiscs containing one CytcO per disc were purified using affinity chromatography. The longest cross-sections of the native nanodiscs were 11nm×14nm. Based on this size we estimated that each CytcO was surrounded by ~100 p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017